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We present a detailed study of spatially propagating waves in a discontinuous
Galerkin scheme applied to a system of linear hyperbolic equations. We start with
an eigensolution analysis of the semidiscrete system in one space dimension with
uniform grids. It is found that for any given order of the basis functions, there are at
most two spatially propagating numerical wave modes for each physical wave of the
partial differential equations (PDE). One of the modes can accurately represent the
physical wave of the PDE and the other is spurious. The directions of propagation of
these two numerical modes are opposite, and, in most practical cases, the spurious
mode has a large damping rate. Furthermore, when an exact characteristics split flux
formula is used, the spurious mode becomes nonexistent. For the physically accurate
mode, it is shown analytically that the numerical dispersion relation is accurate to
order 2p + 2, where p is the highest order of the basis polynomials. The results of
eigensolution analysis are then utilized to study the effects of a grid discontinuity,
caused by an abrupt change in grid size, on the numerical solutions at either side of
the interface. It is shown that due to “mode decoupling,” numerical reflections at grid
discontinuity, when they occur, are always in the form of the spurious nonphysical
mode. Closed-form numerical reflection and transmission coefficients are given and
analyzed. Numerical examples that illustrate the analytical findings of the paper are
also presented.  © 2002 Elsevier Science (USA)

Key Words: finite element methods; unstructured grids; wave propagation;
acoustics.

1. INTRODUCTION

The discontinuous Galerkin method (DGM) is a finite element method that allows a
discontinuity of the numerical solution at element interfaces. It has been developed very
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rapidly in the past few years and has been applied to many fields of practical importance,
such as computational fluid dynamics, aeroacoustics, and electromagnetics (e.g., [2, 3, 7,
22]). A recent review of DGM can be found in [5], with an extensive list of references.

It is well known that for a discontinuous Galerkin scheme employing basis polynomials
up to order p, the rate of convergence is #7*!/2 in general and h”*+! in some special cases [12,
13, 17, 19], where h is a measure for the size of elements. Occurrences of superconvergence
in DGM have been reported in the literature and some are reviewed in [5]. For examples,
Biswas et al. [4] and Adjerid et al. [1] showed superconvergence on Gauss—Radau points.
Lowrie et al. reported numerical results of order 2p + 1 convergence in [14]. Most recently,
Cockburn et al. [6] showed the possibility of obtaining 2p + 1 convergence by a suitable
postprocessing of the numerical solution.

In contrast to the many studies on convergence rates, there have been relatively fewer
works on the wave propagation properties of DGM. In [12], Johnson and Pitkiranta in-
cluded a Fourier analysis of DGM for the case of p =1 and showed that the eigenvalue
of the “amplification matrix” (E(B)) is accurate to order 4 (local error). In [15], Lowrie
performed a Fourier analysis of a space—time discontinuous Galerkin scheme, up to p =3,
for a one-dimensional scalar advection equation and showed that the eigenvalue is accurate
to order 2p + 2 (locally), which results in a global order 2p + 1 decay of the evolution
component of the numerical error. In [9], Hu et al. studied numerical dissipation and dis-
persion errors of DGM for one- and two-dimensional wave equations. They also analyzed
anisotropic errors of wave propagation in triangular and quadrilateral elements. In a recent
work by Rasetarinera et al. [18], it was further demonstrated numerically that dissipation
errors of DGM decay at order 2p + 2 (locally) when the exact characteristics splitting flux
formula is used. Another study of Fourier analysis was carried out in [20] by Sherwin,
which gave exact expressions of the numerical frequency analytically up to p =3 and nu-
merically for p = 10. It is also interesting to note here some related works in continuous
Galerkin methods. For instance, a Fourier analysis of the finite element method with linear
continuous basis functions (p = 1) was given in [22] by Vichnevesky and Bowles. It was
found that the wave speed was actually accurate to order 4. For the Helmholtz equation, a
case of superconvergence in phase error in continuous Galerkin methods has been shown,
numerically, by Thompson and Pinsky [21] and, theoretically, by Ihlenburg and Babuska
[11]. It was found that when basis polynomials of order p are used, the phase error con-
verges (locally) at #2P+! [11]. We point out that this is one order less than that for DGM,
as we will show in this paper.

The present work has been motivated primarily by the need to understand wave prop-
agation in DGM with nonuniform elements (grids). As a first step toward such a goal,
we study wave propagation through an interface with an abrupt change in grid size in one
space dimension. We will first carry out an analysis on spatially propagating waves, referred
to as the eigensolutions, of the semidiscrete system in uniform grids. Then the results of
such an analysis will be applied to study wave reflection and transmission by expressing the
numerical solution on either side of the interface in eigensolutions. The reflection and trans-
mission coefficients are then found by deriving proper coupling conditions at the interface.
As we will see, numerical reflection at a grid discontinuity is dependent on the flux formula
employed in the implementation of DGM. Two commonly used flux schemes are con-
sidered in this paper, namely, the characteristics-based flux and Lax—Friedrich flux for-
mulas. These two schemes will be analyzed in a unified way by introducing an upwind
factor.
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A major difference between the present and previous works in wave analysis for DGM
is that in the present work we study spatial waves where the temporal frequency is spec-
ified and the corresponding wavenumber is sought as eigenvalues, while in the previous
studies the wavenumber was specified and the frequency was found as eigenvalues. The
present approach is necessary because, with an introduction of grid discontinuity, numerical
wavenumber is not constant across the interface of a grid change. The use of spatial waves
also turn out to be advantageous in that the eigenvalue problem is greatly simplified and
reduced. As a result, the numerical dispersion relation is governed by a quadratic equation
that can be solved analytically for any order of the basis polynomials. Specifically, in a
uniform grid, it is found that there are at most two spatially propagating numerical wave
modes for each physical wave of the PDE. One of the numerical wave modes can accurately
approximate the physical wave and the other is a highly irregular spurious mode. They will
be referred to as the physical and spurious numerical waves, respectively, in this paper.
For the physically accurate mode, it will be shown that the numerical dispersion relation
is accurate to (k/)??*2 locally, where k is the wavenumber, which confirms those previous
works mentioned earlier [12, 14, 18]. In fact, we will show that dispersion error is of order
2p + 3 while the dissipation error is of order 2p + 2. For the spurious mode, it is found
that it propagates in the opposite direction of the physical mode and becomes nonexistent
when the exact characteristics-based flux formula is used. Following the analysis of waves
in uniform grids, the effect of a grid change on either side of the interface is studied. It
is found that waves associated with different physical eigenvectors are decoupled and nu-
merical reflections are always in the form of the spurious numerical wave and are highly
damped.

The rest of the paper is organized as follows. In Section 2, we describe the discretization
process and the associated flux formulas. In Section 3, the eigenvalue problem for spatially
propagating waves in a uniform grid is formulated. In Section 4, numerical dispersion
relation and its accuracy are analyzed and discussed. Wave propagation through a grid
discontinuity is studied in Section 5, and numerical examples are presented in Section 6.
Section 7 has our conclusions.

2. FORMULATIONS OF DISCRETIZATION AND NUMERICAL FLUX

Consider the discontinuous Galerkin method for a system of hyperbolic equations in
one-dimensional space,

du =~ of(w)

+
ot 0x

0, ey

where u is a vector of dimension N and f is the flux vector. We will only consider linear
cases in our analysis and assume that

f(u) = Au, 2)

where A is a constant N x N matrix. We assume that A has N real eigenvalues, denoted by
ajfor j=1,2,..., N, and the eigenvectors of A, denoted by e;, form a complete basis in
N-dimensional space. Throughout this paper, unless specified otherwise, lowercase boldface
letters will stand for column vectors and uppercase boldface letters stand for matrices.
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In a discretization of (1) using the discontinuous Galerkin method, the spatial domain is
partitioned into elements, E, = [x,_1, X, ], where n is the element index. In each element,
the numerical solution, denoted by uj(x, ), is expressed as

P
w(x, 1) =Y e(np}), 3)

£=0
where {pj(x),£=0,1,..., p} is the set of basis polynomials for element E,. Here p,

without superscript or subscript, denotes the highest order of polynomials in the chosen
basis and ¢} (¢) is the expansion coefficient. In a weak formulation for (1), we require that

W fouy o of
*+ — |ph(x)dx =0 4
/xnl(at +8x>17((x) X “4)
for¢/ =0,1,..., p. By ause of integration by parts, the above is rewritten as
o 3“7; n R n Xn o ap?’ —
/x o p(x)dx + [f .pg,()c)]xni1 -/ ]fg dx = 0. 3)

n— n—

Atany interface between two elements, i.e., the end points x,,_; and x,,, the flux vector R is
not uniquely determined and a flux formula has to be supplied to complete the discretization
process. Various kinds of flux formulas have been proposed and used in the literature. In
this paper, we will consider two commonly used flux formulas. They are specified below
and will be referred to as the characteristics-based flux formula and Lax—Friedrich flux
formula.

The characteristics-based flux formula is of the form

L, ug) = %[f(uL) + f(ug) — 0|Al(ug —u)l, 6 =0, (6)
where u; and ug are the values of u at the interface calculated using expansion coefficients
of the elements at the left and right of that interface, respectively. (In DGM u; and uy are
not required to be the same.) Here 0 is a scalar parameter. The value of 0 is usually unity
in practice, which makes (6) an exact characteristics splitting (the exact Roe solver). On
the other hand, (6) will result in a symmetric averaged scheme when 6 = 0. Here, we will

keep 0 as a parameter so that our analysis can be useful for a wide range of cases. For
convenience, (6) will be written as

fRuz, ug) = Arug + Agug, (7N
where
1 1
A = E[A+ 0lA]l, Ar= E[A — 0]A[]. ®)
The Lax—Friedrich flux formula is of the form

1
R uz, ug) = S +fug) = Blala(ur —wp)l, 620, ©)
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where |a|,q, 1s the maximum (absolute value) of the eigenvalues of A. This can again be
written in the form of (7), with

1 1
A = E[A + 0|a|mall, Ag = E[A — 0|a|max]l. (10)

Using expression (7) for both cases, the semidiscrete equation (5) can now be written as

Y ol
/ ath pr)dx + [Apui(x,, 1) + Agup ! (x,, 0] pp(xa)
Xn—1

apl,
P av=0 @1

AL G 1) AR D] () — / Aw 7"

Xn—1

for¢’=0,1,...,p.

Together with (3), Eq. (11) yields a system of time evolution equations for the expansion
coefficients for each element. This system is usually solved by some time integration scheme,
such as the Runge—Kutta schemes [2, 7].

3. SPATIALLY PROPAGATING WAVES IN UNIFORM GRIDS

3.1. Use of Local Variables

Introducing a local coordinate £ for each element, we let

_ _ Xp—1 + Xp
£ = (x —x,), whereAx, =x, —x,_1 and X, = ———.

12
Ax, 2 (12)

In addition, the basis functions will be taken to be the same for all the elements when
expressed in the local coordinate &; i.e., we assume

pi(x) = Py(§),

where {Py(§),£ =0, 1, ..., p} is a chosen set of basis functions, such as the Legendre
polynomials, or the set of {1, &, §2, ... &7}, The results of our analysis are independent of
the specific choice on the basis functions.

We look for wavelike solutions supported by (11). By assuming a periodicity in time with
a frequency o, we let

p
Wi, 1) = e U(E), where 0f(E) = Y & P(E), and i=+—1. (13

=0

The expansion coefficients €; are now independent of ¢. Substituting the above into (11),
we get

i wAX, 1
s / WE) - Po(E)dE + [ALAN(D) + Ard ™ (—1)] Pu(1)
—1

1

oPy
lAﬁh@—@ dg=0  (14)

— [AL8; (1) + AR (= D] Pu(=1) —/ o

for¢/ =0,1,...,p.
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3.2. Uniform Grid and the Eigenvalue Problem

We now consider the case where elements are uniform in length; i.e., Ax, =h. After
substituting (3) into (14), we look for solutions with expansion coefficients of the form

& =N\"g, (15)

where A is an undetermined complex number and &, is a vector independent of the element
index n. It is easy to see that if we express \ as

N = elflt, (16)

then k;, can be interpreted as the wavenumber of the numerical solution. Here k;, will be
referred to as the numerical wavenumber.

For convenience of discussion, we define a column vector that contains all the expansion
coefficients

Co
x=|G (17)
é[7
and matrices
1
Q= (g}, where gu = / PU(E)Py(E) dE, (18)
-1
/ ’ ’ ! 8P@'
Q = (g}, where g}, = / PO de, (19)
-1
B.»y = {bee}, where by = Py(a)Py(b), (20)

where ¢/, =0, 1, ..., p. Then, Eq. (14) can be rewritten compactly as

ioh
—T(Q QDX+ (B, ® AL)X — (Bi,—1) ® Ag)X — (Q' ® A)X

1
+N(Bg,—1) ® Ag)X — X(B(,m ®AL)X =0, (21)

where ® denotes the Kronecker product (the definition and relevant properties of ® can be
found in the Appendix Section Al). For a given frequency w, Eq. (21) forms an eigenvalue
problem, with A being the eigenvalue and X the eigenvector.

Next, we show that (21) can be equivalently separated into N independent eigenvalue
problems, where each subproblem corresponds to one of the physical wave modes of the
PDE. Here each pair of the eigenvalue and eigenvector {a;, e;} of the PDE will be referred
to as a wave mode of the PDE (1) and a; is the wave speed of that mode. Since we are
interested in spatially propagating waves, we assume a; # 0.
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We first express X given in (17) in terms of eigenvectors of the PDE as

N
N 21 Y0j€;
Co N ij N
x=|€ | = ZJ 1Y1j€;j Z ®ej52yj®e_,-, (22)
3 =1 i=1
C N ypj
g Zj:l Ypi€j

where y; is a column vector of dimension p + 1. By substituting (22) into (21) and using a
property of the Kronecker product (Eq. (63) in the Appendix), we get

N .
iwh

Z <—2(QYj) ®e;+ (Buny;) ® Ace; — (Bi—ny;) ® Are; — (Q'y;) ® Ae;

=1

1
+)\(B(1,,1)yj> ®ARej — X(B(,lyl)yj) ®ALej>=0~ (23)

Furthermore, for A; and Ay given in (8) and (10), we have

1+ 6B; 1—6B;

ALEj = Tajej, Are; = a;e;, (24)
where
|aj|
Bj=—"— (25)
aj
for the characteristics-based flux defined in (8) and
|a |max
Bj=—— (26)

aj

for the Lax—Friedrich flux defined in (10). Thus the two types of flux formulas can be treated
in a unified way by using (24). For convenience of discussion, we define

vj = 0B, (27)

and vy; will be referred to as the upwind factor of the scheme for the jth wave mode of

the PDE. We note that for both cases given in (25) and (26), |y;| =1 leads to the exact

characteristics splitting. For |y;| > 1, the eigenvalues of A; and Ay are all positive and

negative, respectively. Note also that for the Lax—Friedrich flux formula applied to a system

of equations in which the |a;| varies widely, |vy;| will be large for the slowest wave modes;

however, the wavenumber wh/a; will also be proportionally large for any given w.
Equation (23) can now be expressed as

ioh 14 y; 1—r; ,
> (_zQyj + By - —5 7By, —a;QY;

1—v; B IT+y
a] (l_l)y] )\ 2

a,B( 1, 1))’,) ®ej =0. (28)
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Due to linear independency of e;, itis easy to see that (28) yields N independent subeigen-
value problems,

ioh ’
—TQ +A+v)Ba,y— 1 —v)B1,—1n—2Q
J
1
+7\(1_'Yj)B(l,—l)_X(1+'Yj)B(—l,l) y; =0, (29)
for j =1,2,..., N,in which y; is the eigenvector and X is the eigenvalue.
We observe that by solving the eigenvalue problem posed in (29), we will obtain \ as a

function of the nondimensional frequency ‘Z—h (or wavenumber) and the upwind factor vy;;
. J
ie.,

sz(ﬂiw>. (30)

aj

Since A is directly related to the numerical wavenumber k;, by (16), Eq. (30) is the numerical
dispersion relation of the scheme. It is an intrinsic property of the discretization.

In addition, the nontrivial solution of (29) forms the eigenfunction of the numerical mode.
Specifically, let the eigenvectors of (29) be denoted by y = {v,}; then the eigenfunctions
will be of the form

wi(€, 1) = e " E)e;, (€29

where
. inkh wh wh u
i (&) = e f<§;a_,w> and f(e;w,w)=zwf’z<§>~ (32)
J J =0

For convenience, the eigenfunctions will be normalized such that

wh
f<1;',yj)=1. (33)

aj

4. NUMERICAL DISPERSION RELATION

4.1. Determinant of Eq. (29)

Wave propagation properties of the numerical scheme are encoded in the numerical
dispersion relation (30). For convenience of discussion, the subscript j will be dropped in
this section. We define

h
k="" and K, =kyh.
a

where K is the nondimensional exact wavenumber of the PDE and K, is the nondimensional
numerical wavenumber, as given in (16). K}, is related to \ of (29) by

N =ekn, (34)
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By letting the determinant of the coefficient matrix for y; in (29) be zero, we get an
algebraic equation for A for any given value of K. We have computed the determinant of
(29) symbolically using the computer algebra system MAPLE [16]. It is found that the
determinant, after some normalization, can be written in the form

(1= NIGEKN — HGK)] + (=D (1 + ) G(—iK)%—H(—iK) =0, (35)

where G(x) and H(x) are polynomials of degree p and p + 1, respectively, with real
coefficients. The exact expressions for G and H are given in the Appendix, Section A2.

Before presenting the numerical and analytical results of (35), we make some general
remarks.

1. We observe that due to the fact that the rank of B matrices in (29) is unity (see Eq. (20)),
Eq. (35) is quadratic in \. Consequently, there will be at most two distinct solutions for A
in (35). Furthermore, when y = %1 (exact characteristics splitting of the flux), Eq. (35)
becomes linear in A and there will be only one solution for A.

2. That Eq. (35) is a polynomial of degree p + 1 in K while only quadratic in \ is a
direct consequence of the fact that in Eq. (29), the mass matrix Q is of rank p + 1 while
boundary matrices B are of rank unity. Moreover, as we will see in Section 5.2, the number
of spatially propagating waves stated in the previous remark is consistent with the matching
conditions found at a grid discontinuity.

3. In previous works in the literature, the spatial wavenumber Kj, thus \ in (35), is
specified and K is to be solved from (35). This, of course, will result in solving a polynomial
of degree p + 1, which is difficult to do analytically for p > 3.

4. If N = Npisasolution to (35) fory = o, then A = K]T) is a solution for y = —vp. (This
can be shown simply by taking a complex conjugate of (35).) Thus, itis sufficient to consider
theoretically only the cases with y > 0 in (35), i.e., right-going waves, for dissipation and
dispersion errors.

4.2. Numerical Results of the Eigensolutions

We first present numerical results of (35). Its analytical properties will be presented in
Section 4.3. As we have seen in previous discussions, when |y | # 1, there are two roots for A.
Eachroot represents a numerical wave mode whose wavenumber is found by (34) and whose
mode shape (eigenfunctions) is found by (32). As we will see, one of the numerical modes
can faithfully represent the physical wave and the other mode is spurious or nonphysical.
These two modes behave very differently and it is easy to distinguish the physical mode
from the nonphysical mode. When |y| = 1 (exact characteristics flux), of course, there will
be only one root and the spurious mode will not be present.

We will use a case with y = 0.5 as an example to demonstrate numerical results. For a
given value of exact wavenumber K, we solve Eq. (35) and obtain two values of N, which are
then converted into numerical wavenumbers K, according to (34). In general, the numerical
wavenumber K will be a complex number. For the physical mode, the ratio of the real part
of K, and the exact wavenumber K is plotted in Fig. 1a, for cases p = 1,2, 3,4, 5. The
horizontal axis is the scaled exact wavenumber K /(p + 1) (wavenumber per degree of
freedom of the basis functions). It is seen that for a given value of p, the ratio is close
to unity for a range of K values. This range will be termed resolved wavenumber space.
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FIG. 1. The physical mode. (a) The ratio of the numerical wavenumber K, and the exact wavenumber
(normalized frequency) K. (b) Imaginary part of K,,. p is the order of the basis functions. y = 0.5.

Clearly, the higher the order of the basis functions, the larger the resolved space. Figure 1b
shows the imaginary part of the numerical wavenumber, Im(K}). Since the wave is right
traveling for the present case (y > 0), the positive imaginary part represents numerical
damping as the wave propagates in space. We note that the damping is not significant for
wavenumbers within the resolved wavenumber space in each scheme. The exact boundary
of resolved range is, of course, somewhat arbitrary and depends on the accuracy criteria
imposed. This issue will be closely examined in Section 5.2. In general, the dissipation
error places a higher requirement on the resolution of the scheme than the dispersion error
in DGM.

For the spurious mode, the relation of K, vs K is plotted in Fig. 2. For the real part of K},
shown in Fig. 2a, the curve starts at 0 for p odd and at 7 for p even. The group velocity of
these waves (slope of Re(K}) vs K) is negative, indicating that the spurious waves are left
traveling, in the opposite direction of the actual physical wave. The imaginary part of K,
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FIG. 2. The spurious mode, numerical wavenumber K, vs actual wavenumber (normalized frequency) K.
(a) Real part; (b) imaginary part. p is the order of the basis functions. y = 0.5.

is also negative, indicating again that the wave is left traveling and damped. The damping
rates for the spurious modes in Fig. 2b are quite large for the cases shown. This means that
the spurious mode is expected to be damped very rapidly in computation.

The corresponding eigenfunctions of the physical and spurious modes are plotted in
Figs. 3 and 4, respectively. The eigenfunctions are constructed according to (32), using
eigenvectors from (29) as the expansion coefficients. Plotted are eigenfunctions over a span
of 30 elements, with the first element being [—1, 1], as indicated by dark lines in the plots.
As shown in Fig. 3, the physical mode travels to the right and the amount of damping is
quite visible for p =1 and 2 with the chosen value of K =2. The damping error reduces
significantly as order increases.

In Fig. 4, we see that the spurious nonphysical mode is damped very rapidly for all cases
shown, which is consistent with our observation in Fig. 2.

As will be shown later (Eq. (40)), the damping factor of the spurious mode is related to
the value of y as |

};m |, plotted in Fig. 5. Thus the spurious wave modes become highly
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FIG. 3. Eigenfunctions of the physical mode. K =2;y =05. (@) p=1;(b) p=2;(c) p=3;(d) p=4.

damped when vy is close to unity and much less damped when vy is close to zero or much
greater than unity. In practice, small vy is avoided by choosing 6 ~ 1; large y occurs for
slow wave modes where |a|qx/a; is small.

4.3. Superaccuracy of the Numerical Wavenumber

The numerical wavenumber K of the physical mode should be a close approximation
of the actual wavenumber K, especially in the long wavelength limit, i.e., when K is small.
Here, we give an estimation of the order of convergence in wavenumber space and show
that K, is accurate to the actual wavenumber K to order 2p + 2, which is twice the order
of accuracy of the basis functions.
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Assuming |y| # 1, we can rewrite (35) as a quadratic equation for A as follows:

I+y GiK) _ G6)

2 [HGK) a1ty HZIK) _ 1yl
M= lGar T b 1—v GGK) A+ (D7 1—v GGK)

By examining the computed H(x) and G(x) functions (Appendix, Section A2), we found
that the ratio H(x)/G(x) is always exactly the Pade approximation of e* to order 2p + 2.
(This has been calculated and verified symbolically for p up to 16 and is conjectured to be
true for all p.) That is, we have

H(x) _

X 2p+2
Go) et + 0P, 37
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exponential damping rate
n

1(=60)

FIG. 5. Effects of y on the damping rate of the spurious mode.

Consequently, we can show that for small K, the two roots of (36) are

AP =K L Cl(K)*PT? + CLiK)*P3 + ... (physical mode) (38)
and
! 1 G(—iK) _;
A = 1y LIV O ik s
1—~ GGK)

+ Dy(i K)*3 .- (nonphysical mode), (39)

where Cy, C, and D, D, are real coefficients, and where dots represent higher order terms
in (i K). A detailed derivation is given in the Appendix, Section A3. Here the superscripts
(p) and (s) indicate the physical and spurious modes, respectively.

Thus, for the numerical wavenumber of the physical mode K, Eq. (38) gives

eiK,(f) —eK 4 Cl(l-K)Z[H-Z + Cz(iK)2p+3 4o,
Therefore, we get the order estimate
K" = —iln[e’™ + C LK) + GG K+
=K —iCiiK)*"*? —iC)(i Ky + ...
= K+ (=1)PiC K> 4 (=PI KP4 (40)

where C} is also a real coefficient. Furthermore, by considering the real and imaginary parts
of (40), we can get an estimation of the convergence rates of the dispersion and dissipation
errors. Specifically, we have the following:

dispersion error: Re(K;(l”)) — K =(—1)PH R 4 (41)

dissipation error: Im(K,(Zp)) =(-D)PCK¥*? 4 ..., 42)

That is, for DGM, the dominant error is the dissipation error, which reduces locally at order



530 HU AND ATKINS

order 2p+3

[Re(Ky)-K]

Im(Kh)

FIG. 6. Local order of convergence for the dispersion and dissipation errors of the physical mode. (Circle)
Numerical wavenumber computed using Eq. (35); (solid line) theoretical convergence rate. (a) Dispersion error;

(b) dissipation error. y = 0.5.

2p + 2. The dispersion error, on the other hand, reduces locally at order 2p + 3. This is
confirmed in Fig. 6, where the numerical dispersion relations shown in Fig. 1 are replotted
in log—log scale.

Note that when |y| = 1, the spurious mode is nonexistent and it is straightforward to
verify directly from (35) that (40)—(42) are still true for the physically accurate mode.

We also note that for polynomials H(x) and G(x) with given orders, (37) is the best
possible order of approximation. This suggests that (40) is the best asymptotic numerical
dispersion relation possible.

5. WAVE REFLECTION AT AN INTERFACE OF MESH DISCONTINUITY

5.1. Reflected and Transmitted Waves

In this section, we consider a situation where the size of the element is abruptly changed
from h; to h, across the interface between elements n = 0 and 1, as shown in Fig. 7.
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incident wave

Element index n= -3 -2 -1 0 1 2 3
\ \ \ \ \ \ \ \ \ \
X3 X X1 Xp X1 X2 X3
\fY/ \/\K\/
h; h,

FIG.7. A schematic of grid change.

We will study the wave reflection and transmission at the interface. Specifically, we will
introduce an incident physical wave, traveling from left to right, and look for the reflected
and transmitted waves caused by the grid discontinuity.

Using the eigenfunction expression (31), we can express the incident wave as

. . () (,\)h
—iot jinK,” £(p) 1

Wincident = A()e e g Jo gv a 5 'Yj() ejov (43)
Jo

where Ay is the wave amplitude. Here e}, denotes the eigenvector of a right-going wave
mode of the PDE (1), and K ,(lp ) io and f (p )(é »Yj,) are the numerical wavenumber and
eigenfunction for that wave mode found assummg a uniform mesh /. In other words, (43)
satisfies the time harmonic semidiscrete equation (14) if Ax, =h, is held for all n. The
superscript (p) in (43) denotes that the incident numerical mode is a physical wave mode.
Likewise, a superscript (s) will be used to denote the spurious mode.

Due to the discontinuity in mesh size, there will be reflections at the interface. For
vign: denote the time-independent solutions in the
left and right half-domains on either side of the interface, respectively. By making a use of

(32), we get

convenience of discussion, let G uleﬂ and 0"

mK,:?)/ f(P) (g’ whl ’ ’on>ej0
a;

ﬁ;’fft Jo
incident
© wh wh
an/n Jo f(v) (E 0 s ’ym)em Z B eanh' J f (g Al 5 Yj)
4 Jo J#io i (44)
reflected
and
tnK(’)) ») 0)]’12 inkK;" + 0.)]’12
hzjof g’ ' a’on ejo+ZAe hzjf g . "YJ
s = o 2 N @)

transmitted

Here, A, and A, are amplitudes of the reflected and transmitted waves associated with
the e;, wave and B; and A; are those associated with the other waves of the PDE. The
superscripts + and — in the terms inside the summations of (44) and (45) denote the
direction of propagation (right traveling and left traveling, respectively). It will be shown
next, however, that all B; and A; are zero.
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5.2. Matching Conditions at the Interface

To derive matching conditions at the interface, we first note that @, and @}, satisfy
Eq. (14) for a uniform element size &; and h,, respectively. The coupling of the solutions
can be found by applying (14) at the two adjacent elements near the interface of the grid
discontinuity, namely, at elements n = 0 and 1 (Fig. 7). Thus, from (14), we have forn = 0

h
“”21 / 0),,(6) - Po(€)dE + [ALal,(1) + Aglly, (—1)] P(1)

3Py
— [ALfi (1) + Agli),(— )] Po(=1) — / lAﬁleﬂ(g)a—g di =0,  (46)

and forn =1

i(x)/’lz
2

[ nn€) Pe®)dE + [, (1) + Agi, (~D] Pe(D

1
. . . a Py

— [ALE),(1) + Agiy,, (= D] Pu(—1) — / 1 Au}igh,(g)¥ dé =0. (47)

These two conditions can be simplified when we recognize that (46) and (47) will still

be true when ﬁ”gh,( 1) in (46) is replaced by ﬁleﬁ( 1) and ﬁleft(l) in (47) is replaced by

o gh,(l) due to the reason stated at the beginning of the section. Consequently, the matching

conditions (46) and (47) are equivalent to the following two equations, which are much more
compact:

ARl (—1) = Agidy,,;, (—1) (48)
and
180(1) = A, (D). (49)

Now by substituting (44) and (45) into (48) and (49), and recalling (24), we easily get

iKY (p) (.l)h] 1 —;j iKY a(s) (Dl’l[ 1 — Y
Aoe hi.jo f't) , —_—, ‘YIO Toajoejo + Arel hijo fjos ’ ) 'YJO Toajoejo
aj, ajo

i 1_7
+ZB eKh!/f ( j>2]ajej

J#Jo

kP . ©h 1 —vj Kt
= A "o fjo -1 a. Yo 2 ajej, + Z Ajel o fj

J#Jo
why 1 —y;
I, —=,y; ae; 50
() 5 o
and
I+ +v +v
Ao ) - o€jo T Ar joajo J0+ZBJ aje;
J#Jo

1+ I+,

= A= tajei+ Y A taje; (51)



DISCONTINUOUS GALERKIN METHOD 533

(In (51), we have used the fact that eigenfunctions are normalized such that f|:=; =1, as
in (33).) Since e; are linearly independent, it follows that

Bi=A;=0, j#jo (52)

This means that no component of wave modes other than that of the incident mode e, will
be present in the reflected and transmitted waves. This also suggests that the reflected wave
can only be in the form of the spurious mode, the only opposite-traveling numerical wave
for the e;, mode. An interesting consequence of this is that when the exact characteristics-
splitting flux formula is used, there will be no reflected wave because the opposite-traveling
spurious wave is nonexistent.

Further, by equaling the coefficients of e, in (50) and (51), and assuming |y;,| # 1, we
get two coupled equations for A, and A;:

K (p) ) wh o (_ U)hl iK' o(p) .(’“)hz
Aoel hlvjﬂfjo (— 0 — Yo +A e h' "‘f ’ a. — Y Alel hz'mfjo _1’ T’ Yio |

Jo Jo Jo
Ao+ A, = A,.

Solving the above, we get the following closed expressions for the reflection and transmis-
sion coefficients:

(p)

A D (218 ) = P (<1 ) (53)
Ao il 0 (=15 2y ) — M £ (—1; 202 )
A S (<1 )= R P (<152 ) (54)
Ao R 0 (— 15 2y ) — i £ (1 'mhz’vfo)'

Thus, numerical reflection and transmission coefficients are directly related to the change
in dispersion properties of the scheme when grid change occurs.

To express the above in a more compact and, perhaps, more insightful form, we note
that numerical solutions in DGM have a small discontinuity (or gap) at the boundary of
any two elements. This discontinuity, of course, becomes diminished with the increase in
the resolution of the scheme. Specifically, had the grid size been uniformly #, if we let A,
denote the discontinuity of the numerical solution at the interface of elements n = 0 and 1,
then we would have

N ~0 iK) L wh
Ahzuh(—l)—uh(l)ze f —1,7,7 _17

where uj(£) is the eigenfunction specified in (32). Thus, in terms of A, the expressions
for the reflection and transmission coefficients given in (53) and (54) can now be written as

A A(P) A(p)

L=t h (35)
Ao AP — AP

(p)
A _ AL A (56)

(s) (p)’
Ao Ay =AY
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FIG. 8. (Solid lines) Boundaries of 2% numerical reflection. Reflected wave is less than 2% of the incident
wave for parameters above the curves. y = 0.5. (Dashed lines) Accuracy limits determined from the dispersion
relation of a uniform grid /,. The accuracy limit for p = 1 (not shown) is far above and out of the picture.

in which the superscript denotes the mode type, the physical (p) or spurious (s) mode, and
the subscript denotes the mesh spacing used for calculating the gap.

Equation (55) implies that numerical reflection will be small for waves that are well
resolved under the grids on both sides of the interface, since the solution discontinuity
decreases dramatically as the resolution of the scheme increases. This is further illus-
trated in Fig. 8, where regions that satisfy the requirement on the resolution (degrees
of freedom per wavelength) so that the reflection is 2% or less are plotted for a given
grid discontinuity of ratio h,/h;. A value of vy = 0.5 is used in the calculations. The
solid line is the 2% reflection boundary for each given order of the scheme, as indi-
cated on the graph. As we can see, when the ratio h,/h; increases, the requirement on
resolution also increases. It is interesting to compare this requirement with the resolu-
tion requirement placed by the accuracy criteria of the scheme had the grid been uni-
formly spaced. Since here we assume h, > hj, the accuracy requirement will be calcu-
lated based on h;,. The accuracy boundaries are plotted in Fig. 8 as dotted lines. The
criteria used here consist of the dispersion error ZWW < 0.001 and dissipation
error 1 — e~ 2mmki/K (). 001. This corresponds to requiring that the phase and damp-
ing errors be less than 10% after a wave has been propagated 100 wavelengths. Enlarged
numerical dispersion relations are plotted in Fig. 9, where the accuracy limits used are

shown as dotted lines. Figure 8 indicates that the uniform grid accuracy constraint is
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FIG. 9. Enlarged numerical phase (a) and damping (b) errors per wavelength of propagation for the physical
mode. k; is the numerical wavenumber and K is the exact wavenumber. r = e~ 2™"®&"/K i5 the wave amplitude
damping factor. (Dotted lines) The accuracy limits used in plotting Fig. 8.

similar to, and in many cases more stringent than, the accuracy constraint due to the abrupt
change in mesh size. Although the uniform grid and discontinuous grid error criteria used
here are somewhat arbitrary, we use Fig. 8 to emphasize the notion that both types of
errors follow parallel trends with respect to varying mesh sizes and the increase in the
resolution of a scheme leads to the reduction of numerical reflection caused by a grid
discontinuity.

6. NUMERICAL EXAMPLES

In this section, we present numerical examples that illustrate and verify the wave propa-
gation properties found in this paper.
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6.1. Superaccuracy of Wave Propagation

We solve the linearized Euler equations with constant mean flow in 1-D; i.e.,

ou ou 0
—+M—+ — =0, 57
Jat + 0x + 0x 7

ap ap  OJu

E‘l‘Maﬁ-a—o, (58)
where M is the mean flow Mach number, u is the velocity, and p is the pressure. The Jacobian
matrix has eigenvalues M — 1 and M + 1, which represent the acoustic wave modes. We
use Legendre polynomials as basis functions in our calculation. The semidiscrete equation
is solved by an optimized fourth-order Runge—Kutta scheme (LDDRKS56 [10]).

To verify the accuracy of spatial propagation, we consider a computational domain of

[0, 100] and introduce an incoming wave

{”} = sinfwo(x — 1)] m (59)
at the left boundary x = 0. The frequency is chosen to be wy = /2, with a wavelength Ay =
4 in a mean flow M = 0. At the right boundary x = 100, we implement the characteristics
boundary condition; i.e., the exact characteristics flux formula (y = 1) is used at the right
boundary of the last element. After the initial transient has exited the right boundary, the
computational domain is filled with the sine wave. We then compare the numerical solutions
at the first period near x = 0 with that of the 20th period, noted by dark lines in Fig. 10.
Specifically, we measure the error according to pressure p as

Ao
E = \// |pn(x, ) — pp(x + 20Ng, 1)|2 dx
0

no—1

h
:Enz:;

1
/1 |, 1) — p e, ) e, (60)

pressure p
[en]
o

0 10 20 30 40 50 60 70 80 90 100
X

FIG. 10. Propagation of a periodic sine wave. The difference of the solutions at the two periods shown in
dark lines are computed in Table I.
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TABLE 1
Solution of (57)—(58), M = 0, Using Uniform Grids

y=1 vy=05
p h Error E Order Error E Order
1 1 1.74054 — 1.79386 —
0.5 1.09166 0.6730 1.46813 0.2890
0.25 0.197915 2.4635 0.344971 2.0894
0.125 0.0261657 2.9191 0.0506057 2.7691
2 1 0.27629 — 0.286715 —
0.5 0.010116 4.7714 0.00634575 5.4976
0.25 0.000323692 4.9658 0.000172082 5.2053
0.125 0.1016 x 10~* 4.9923 0.5165 x 10™° 5.0574
3 1 0.00386958 — 0.00381781 —
0.5 0.3217 x 10™* 6.9102 0.4912 x 107 6.2801
0.25 0.2552 x 107° 6.9780 0.4709 x 107° 6.7048
0.125 0.2019 x 1078 6.9812 0.3964 x 1078 6.8919
4 2 0.0126055 — 0.0238191 —
1 0.3002 x 107* 8.7137 0.3034 x 107* 9.6164
0.5 0.6153 x 1077 8.9305 0.3858 x 1077 9.6192

Note. Error is calculated using (60).

where n is the element index and ng = % Table I shows the mesh refinement results
for p = 1 to 4. Since the local dispersion relation is accurate to order 2p + 2, the global
error measure E defined in (60) will decrease at order 2p + 1. This is observed in all the
cases.

6.2. Reflection at Grid Discontinuity and Comparison with Eigenfunctions

In Figs. 11 to 13, we show the propagation of the sine wave (59) through a mesh discon-
tinuity. Since the numerical wave reflection properties are dependent on the flux formula
used, we will show cases with the exact as well as inexact characteristics flux formulas. This
will be indicated by the value of y used in the computation. A value of |y| = I indicates
exact characteristics splitting while a value of |y| # 1 indicates inexact characteristics flux.
In some calculations, a fairly large grid discontinuity has been used. This is to make reflec-
tion errors more visible for the purpose of illustration. In all the calculations, a fifth-order
(p = 4) scheme is used.

6.2.1. Exact Characteristics Flux Formula |y| = 1

In Figs. 11a and 11b, a grid discontinuity is introduced at x = 50, with the ratio of grid
spacing being 2 and 5, respectively. The exact characteristics-based flux formula is used
in this example with 6 = 1. In both cases, the abrupt change of element size causes no
numerical reflection because the opposite-traveling spurious mode is now nonexistent. The
damping of wave amplitude in the coarsened grid is due to the reduction in resolution and
is expected.
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FIG. 11. Propagation of a periodic sine wave through a grid discontinuity at x = 50. M = 0; y = 1 (exact
characteristics flux). (+) Grid points. (a) hy = 1, h, =2;(b) hy = 1, h, = 5.

6.2.2. A Slow Wave Mode |y| = 10

In Fig. 12a, we show the solution for a case in which vy is large (y = 10). This situation
is likely to occur when the wave speed of an eigenmode is small relative to the fastest
eigenmode governed by a given system of equations. In Fig. 12a, the amount of reflection is
visible since the grid ratio here is quite large. By subtracting out a calculation with uniform
grids (done separately), the reflected wave is extracted and plotted in Fig. 12b. Inspecting
visually, the reflected wave is in the form of the spurious numerical mode. This will be
further confirmed when we compare the numerical solution with the eigenfunction formed
in (31).

To compare the numerical solution with the eigenfunctions found in Section 4, we first
extract the complex coefficient vector from the numerical solution by constructing

V=V|—y + lV|t=,0+%

in each element. In the above, T is the period of the sine wave, #; is an arbitrary time at which
the numerical solution has become time periodic, and v denotes the solution coefficient
vector of the pressure p. Then, we fit this coefficient vector by a linear combination of the
eigenvectors of (29). Specifically, suppose the eigenvectors of (29) are denoted by v” and
v®) for the physical and spurious modes. We try to find a and b such that

v =av\? + bv®¥. 61)
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(a) Propagation of a sine wave through a grid discontinuity, #,/h; = 5,y = 10. (b) Reflected wave.

(c) Decomposition of numerical solution into physical and spurious modes. (Circles) Physical mode; (triangles)

spurious mode; (dashed lines) theoretical predictions of (55)—(56).

The coefficients a and b are computed by requiring (61) to be orthogonal to v'?’ and v'*).
In other words, we “decompose” the numerical solution into eigenmodes. This is done for
every element and the residues of (61) have been found to be near machine zero in all cases.
The magnitudes of a and b are plotted in Fig. 12c. Here, circles indicate the magnitude of the
physical mode, |a|, and the triangles the spurious mode, |b|. The reflection at the interface
at x = 50 and the subsequent exponential decay are clearly shown. Also shown, in dotted
lines, are the predictions of the reflected and transmitted waves, with their amplitudes at the
interface being determined by (55) and (56). Excellent agreements are found.
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6.3. Propagation of an Acoustic Pulse with Mean Flow

In the third example, Fig. 13, we show the propagation of an acoustic pulse in a mean
flow of Mach number M = 0.8. We solve (57)—(58) using the Lax—Friedrich formula (9)
with 8 = 1. The initial Gaussian profile in the u velocity component is separated into a
downstream propagating pulse, with speed M + 1, and an upstream propagating pulse, with
speed M — 1. Both pulses are to propagate through a grid discontinuity of ratio i,/ h; = 5

1.0 \

08 | (a) t=0 |
0.6 | |
04 ]
0.2 | ]
0.0
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0.2 | -
0.0
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FIG. 13. Propagation of an acoustic pulse in a mean flow of M = 0.8, using Lax—Friedrich flux formula (9)
with = 1. (Inserts) Magnified ranges of interest.
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located at x = 30 and —30, respectively. The difference in wave propagation speed results
in two different upwind factors y for the two pulses; namely, y = 1 for the downstream
propagating pulse and y = —9 for the upstream propagating pulse, according to (26) and
(27). For the right-traveling pulse, since the flux formula is the exact characteristics splitting,
no reflection occurs as the pulse propagates through the grid discontinuity. For the left-
traveling pulse, small reflected waves are detected due to the inexact characteristics flux
formula for that wave speed. We note that the reflected waves are in the form of spurious
waves and decay rapidly. We emphasize that the use of a relatively large abrupt increase in
grid size is to make the reflections more visible. Indeed, a calculation using a grid ratio of
2 produced much smaller reflected waves.

7. CONCLUSIONS

We have carried out a detailed study of spatially propagating waves in a discontinuous
Galerkin scheme applied to a system of linear hyperbolic equations. An eigenvalue problem
for the spatially propagating waves is formulated. In one dimensional space, the eigenvalue
problem reduces to a quadratic equation and, consequently, yields at most two numerical
wave modes for each physical wave mode of the partial differential equations. One is
physically significant, with a dispersion error that decays like h??*3 and a dissipation
error that decays like 42P*2 locally. The other numerical mode is spurious. The spurious
mode becomes nonexistent when the exact characteristics-splitting flux formula is used.
Furthermore, reflection and transmission coefficients of an incident wave at an interface of
grid discontinuity are derived. It is shown that numerical reflection error consists of only
the spurious mode and its magnitude depends on the spatial resolution of the grids on both
sides of the interface. Theoretical predictions are verified with numerical examples. These
predictions should benefit the design and application of the DGM scheme with nonuniform
grids. In a forthcoming paper, we will examine the effects of grid discontinuity in two-
dimensional space.

APPENDIX

A1l. Kronecker Product

Let A = {a;;}ixk and B = {B;;},,xm. The Kronecker product is defined as

OL]]B OtlzB R OL]kB
A ® B — OLZ]B ()LzzB L] ()Lz](B . (62)
OL”B OL[2B e OL[kB

Inxkm

It is easy to verify by direct calculation that for any matrices A, B and vectors X, y, we
have

(A®B)(x®Yy) = (AX) ® (By). (63)
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A2. Polynomials G(X) and H(X)

Polynomials G(x) and H(x) appeared in (35):

G(x) H(x)
p=1 1—%x 1+%x+éx2
p=2 1—%x+2—10x2 1+%x+%x2+$x3
p=3 1— 3x—i—ll“x2 2(')0)63 1+‘7—‘x+%x2+%x3+§—0x4
p=4 1——x+ Sx? —l—zﬁx +@x 1+5x+356x2+%x3+305ﬁx4+15120)‘5
p=5 1= fxtx — x4 gt — g l+”x+22x +99x + 550+ 55 + 30"

It is straightforward to verify that H(x)/ G (x) is exactly the Pade approximation of e* to
order 2p + 2. This has been confirmed up to p = 16 and is conjectured to be true for all p.

A3. Accuracy of Eigenvalues

In this section, we give a derivation of (38) and (39). We need only to consider the cases
when |vy| # 1. The case for |y| = 1 follows trivially from (35).
For convenience of discussion, define

_ a1+ Ity
B=(-D" T
Then, Eq. (36) becomes
2 H(K) H(—iK) G(—iK)
G(iK) TP G(iK) MR G(iK) 0 ©4)

Let the two roots of (64) be denoted by \” and A with their values at K = 0 as follows:
atK =0, \» =1 and \9 =8.

Now consider an auxiliary quadratic equation:

2 ik _ix G(=iK) G(—iK)_
o) e'" 4 Be GaK) G—H?)iG(iK) =0. (65)

The two roots of (65) are easily found to be

G( lK)

o =X and o =Be K
GGK)

By subtracting (65) from (64), we get

N—o

. [HGK) H(—iK)}H[ +pe® IR o (66)

G(iK) G(iK) G(@K)
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By the results of Section A2, we have

H(iK)

_ K :
G(iK)_e + R(K)

and

HK) _ HEK) GEK) i | g o GEiK)
G(K) ~ G(—iK) GGK) GGK)
_ xGEiK) . G(=iK)
= Gk T REK e

where R(x) is an O(x?P*?) function with real coefficients. Then Eq. (66) can be written as

N — 02— |k 4 BeK G(;(_llKIﬂ N—0)= {R(il() + BR(—iK)GG(;iKK)) N, (67)
For simplicity, let us define
AGK) = K + e Gé(_l’KK))
B(iK)=R(iK)+ BR(—iK)G(_,iK)
G(iK)
and rewrite (67) as
(A—0)[A\+0 —AGK)] = BGK)\. (68)
It is straightforward to verify that as K — 0, we have
AGK) =1+ Bl + piGK) + paG K’ + -+, (69)
B(iK)=[1+BwK)*P"? 40Ky ..., (70)
and
AP 40P — AGK) =[1 — B + W|(iK) + poG K +- -, (71)
A 40— AGK) = [B— 1]+ /(i K)+ pyGK)* + -, (72)

where all the coefficients on the right hand sides are real and where the dots represent higher
order terms in (i K') with real coefficients.

Therefore,

(1) If B # %1, it follows easily from (68) that

AP _ () — E 1— E}vl(iK)ZIHZ 4. (73)

and

=B GK)PP2 (74)
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This immediately leads to (38) and (39).
(i1) If B = 1, then instead of (71) and (72), we have

NP 00— AGK) = p(K) + poiK) + o,
A £ 6@ — AGK) = W[ K)+ pjG K + -+,

which gives

)\(ﬂ) _ O.(P) — i/vl(iK)Zp-H R
My

and

2
AS — g = FBvl(i[()%"'*‘l + ..
1

This is one order lower than that of case (i).
(iii) If B = —1, then instead of (70), we have

B(K)=vGiK)» + ...
and it follows from (68) that
r
AP _ 5P = ,v2(lK)2P+3 + ...
2
and
(s) (s) 1 . 2p+3
A — ¥ = _EVZ(ZK) P

This is one order higher than that of case (i).
We note, however, that cases (ii) and (iii) are possible only if v = 0 or co. Neither is a
very practical situation.
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